с $_{\text {нартев }} 14$

Additional Problems

Solved Problems

14.1 The speed of a separately excited d.c. motor is controlled below base-speed by type-A chopper. The supply voltage is 220 Vdc . The armature circuit has $R_{a}=0.5 \Omega$ and $L_{a}=10 \mathrm{mH}$. The motor constant is $K_{v}=0.1 \mathrm{~V} / \mathrm{rpm}$. Motor drives a constant torque load requiring an average armature current of 30 A . On the assumption of continuous armature current, determine:
(a) range of speed control and
(b) range of duty cycle.

Sol. Motor terminal voltage,

$$
E_{t}=E_{o}=E_{a}+I_{a} \cdot R_{a} .
$$

Minimum possible speed of d.c. motor is zero. This gives motor counter emf, $E_{q}=0$.

$$
\begin{array}{lrl}
\therefore & \alpha E_{s} & =E_{o}=o+I_{a} \cdot R_{a} . \\
\alpha \times 220 & =0+30 \times 0.5=15 \mathrm{~V} \\
\therefore & \alpha & =\frac{15}{220}=3 / 44 .
\end{array}
$$

Maximum possible value of duty cycle is 1 .

$$
\begin{aligned}
\therefore \quad \alpha E_{s}= & E_{a}+I_{a} . R_{a} . \\
& 1 \times 220=\mathrm{kV} . \mathrm{N}+30 \times 0.5 . \\
\therefore \quad N= & \frac{220-15}{0.10}=2050 \mathrm{rpm} .
\end{aligned}
$$

Therefore
(a) range of speed control is $O<N<2050 \mathrm{rpm}$ and
(b) range of duty cycle, $\frac{3}{44}<\alpha<1$
14.2 A separated excited d.c. motor is fed from three phase six-pulse fully controlled bridge converter. The motor develops its full-load torque at a rated speed of 1800 rpm taking a rated current of 60 A at 440 V . The input to three-phase converter is from an ideal source of 50 Hz .
(a) Determine the rms value of line voltages input to the converter if motor runs at its rated conditions for delay angle $\alpha=0^{\circ}$.
(b) What is the range of firing angles for a speed control of 1800 rpm to 900 rpm ? The armature resistance is 0.5 ohm .

Sol. (a) We have, $\quad E_{d c_{\alpha}}=\frac{3 \sqrt{2} E}{\pi} \cos \alpha$
At

$$
\alpha=0^{\circ}, E_{d c \alpha}=440 \mathrm{~V}
$$

$$
\therefore \quad 440=\frac{3 \sqrt{2} E}{\pi} \quad \therefore E=326 \mathrm{~V}
$$

(b) Back emf of motor at rated condition,

$$
E b_{1}=440-60 \times 0.5=410 \mathrm{~V}=K \times 1800
$$

Back emf at $900 \mathrm{rpm}=E b_{2}=K \times 900$
Or

$$
\begin{aligned}
\frac{E b_{2}}{410} & =\frac{K \times 900}{K \times 1800}=1 / 2 \text { or } \\
E b_{2} & =\frac{410}{2}=205 \mathrm{~V}
\end{aligned}
$$

Hence of 900 rpm ,

$$
\left.\begin{array}{rl}
E_{d c_{\alpha}} & =E b_{2}+I_{a} \cdot R_{a}=205+60 \times 0.5 \\
& =235 \\
\therefore \text { Hence, } \quad 235 & =1.35 \times 326 \cos \alpha \\
& \quad \cos \alpha
\end{array}\right)=235 / 1.35 \times 326=0.534 .
$$

\therefore Range of firing delay angle is

$$
\theta \leq \alpha \leq 57.710
$$

